
1

CMSC 430

Introduction to Compilers

Chau-Wen Tseng

These slides are based on slides copyrighted by Keith Cooper,

Linda Torczon & Ken Kennedy at Rice University, with

modifications by Uli Kremer at Rutgers University, and

additions from Jeff Foster & Chau-Wen Tseng at UMD

CMSC 430 Lecture 1
2

CMSC 430 — a.k.a. Compilers

• Catalog Description

→ Introduction to compilers. Topics include lexical analysis, parsing,
intermediate representations, program analysis, optimization,
and code generation.

• Course Objectives

→ At the end of the course, you should be able to

� Understand the design and implementation of existing

languages

� Design and implement a small programming language

� Extend an existing language

2

CMSC 430 Lecture 1
3

Basis for Grading

• Tests
→ 2-3 Midterms 36%

→ Final 24%

• Projects
→ Scanner / Parser 10%

→ Type Checker & AST 10%

→ Code Generator 10%

→ Byte Code Analyzer 10%

Notice: This grading scheme is tentative and subject to change.

CMSC 430 Lecture 1
4

Basis for Grading

• Tests
→ Midterms

→ Final

• Practice problems

• Projects

� Closed-notes, closed-book

� Final is cumulative

� Reinforce concepts, provide practice

� Cumulative

� Don’t fall behind!

3

CMSC 430 Lecture 1
5

Syllabus

• Regular Languages, Scanning

• Context-free Languages, Parsing

• Syntax-directed Translation

• Intermediate Representations

• Code Generation

• Code Optimization

• Dataflow Analysis

• Advanced Code Generation
→ Register Allocation

→ Instruction Scheduling

• Advanced Optimizations
→ Parallelism

→ Data Locality

CMSC 430 Lecture 1
6

Recommended Textbook

• Engineering A Compiler

→ Keith Cooper & Linda Torczon

4

CMSC 430 Lecture 1
7

Class-taking technique for CMSC 430

• I will use slides extensively
→ I will moderate my speed, you sometimes need to say “STOP”

• Please ask lots of questions
→ Course will be more productive (and enjoyable) for both you and me

• You should read books for details
→ Not all material will be covered in class
→ Book complements the lectures

• Use the resources provided to you
→ See me in office hours if you have questions

→ Post questions regarding projects on Piazza

CMSC 430 Lecture 1
8

Compilers

• What is a compiler?
→ A program that translates an executable program in one

language into an executable program in another language
→ A good compiler should improve the program, in some way

• What is an interpreter?
→ A program that reads an executable program and produces the

results of executing that program

• C is typically compiled, Ruby is typically interpreted

• Java is compiled to bytecodes (code for the Java VM)

→ Which are then interpreted

→ Or a hybrid strategy is used

� Just-in-time compilation

� Dynamic optimization (hot paths)

5

CMSC 430 Lecture 1
9

Why Study Compilation?

• Compilers are important system software components
→ They are intimately interconnected with architecture, systems,

programming methodology, and language design

• Compilers include many applications of theory to practice
→ Scanning, parsing, static analysis, instruction selection

• Many practical applications have embedded languages
→ Commands, macros, …

• Many applications have input formats that look like
languages,

→ Matlab, Mathematica

• Writing a compiler exposes practical algorithmic &
engineering issues

→ Approximating hard problems; efficiency & scalability

CMSC 430 Lecture 1
10

Intrinsic interest

� Compiler construction involves ideas from many different
parts of computer science

Artificial intelligence
Greedy algorithms
Heuristic search techniques

Algorithms
Graph algorithms, union-find
Dynamic programming

Theory
DFAs & PDAs, pattern matching
Fixed-point algorithms

Systems
Allocation & naming,
Synchronization, locality

Architecture
Pipeline & hierarchy management
Instruction set use

6

CMSC 430 Lecture 1
11

Intrinsic merit

� Compiler construction poses challenging and interesting
problems:

→ Compilers must do a lot but also run fast

→ Compilers have primary responsibility for run-time performance

→ Compilers are responsible for making it acceptable to use the
full power of the programming language

→ Computer architects perpetually create new challenges for the
compiler by building more complex machines

→ Compilers must hide that complexity from the programmer

→ Success requires mastery of complex interactions

CMSC 430 Lecture 1
12

Early Compilers – Making Languages Usable

It was our belief that if FORTRAN, during its first months, were

to translate any reasonable “scientific” source program into an

object program only half as fast as its hand-coded counterpart,

then acceptance of our system would be in serious danger... I

believe that had we failed to produce efficient programs, the

widespread use of languages like FORTRAN would have been

seriously delayed.

— John Backus

7

CMSC 430 Lecture 1
13

Current Compilers – Improving Language Usability

Today's programming languages give programmers unprecedented

power and flexibility, and yet sometimes they are still not enough.

There are many occasions when it is possible to encode the solution

to a programming problem in an existing language, but at the cost of

significant effort, loss of elegance and clarity, and reduced

maintainability. In these cases, often the best way to solve a problem

is to develop a new language that makes the solution easy to

express correctly, succinctly, and maintainably. Examples of such

languages range from "little" ones like Make, XML, JSON, YAML,

Wiki, bash, Windows .ini files, autoconf, etc., to "big" ones like Perl,

Python, Ruby, PHP, JavaScript, R, MATLAB, etc. All of these

languages were invented because existing languages just weren't

good enough, and in the course of your career, you also may find

yourself needing to invent a new programming language!

— Jeff Foster

CMSC 430 Lecture 1
14

Implications

• Must recognize legal (and illegal) programs

• Must generate correct code

• Must manage storage of all variables (and code)

• Must agree with OS & linker on format for object code

Big step up from assembly language—use higher level notations

High-level View of a Compiler

Source

code

Machine

code
Compiler

Errors

8

CMSC 430 Lecture 1
15

Traditional Two-pass Compiler

Implications

• Use an intermediate representation (IR)

• Front end maps legal source code into IR

• Back end maps IR into target machine code

• Extension: multiple front ends & multiple passes (better code)

Typically, front end is O(n) or O(n log n), while back end is NPC

Source

code

Front

End

Errors

Machine

code

Back

End

IR

CMSC 430 Lecture 1
16

Can we build n x m compilers with n+m components?

• Must encode all language specific knowledge in each front end

• Must encode all features in a single IR

• Must encode all target specific knowledge in each back end

Limited success in systems with very low-level IRs

A Common Fallacy

Fortran

Scheme

Java

Smalltalk

Front

end

Front

end

Front

end

Front

end

Back

end

Back

end

Target 2

Target 1

Target 3
Back

end

9

CMSC 430 Lecture 1
17

Responsibilities

• Recognize legal (& illegal) programs

• Report errors in a useful way

• Produce IR & preliminary storage map

• Shape the code for the back end

• Much of front end construction can be automated

The Front End

Source

code
Scanner

IR
Parser

Errors

tokens

CMSC 430 Lecture 1
18

The Front End

Scanner
• Maps character stream into words—the basic unit of syntax
• Produces pairs — a word & its part of speech

x = x + y ; becomes <id,x> = <id,x> + <id,y> ;
→ word ≅ lexeme, part of speech ≅ token type
→ In casual speech, we call the pair a token

• Typical tokens include number, identifier, +, –, new, while, if
• Scanner eliminates white space (including comments)
• Speed is important

Source

code
Scanner

IR
Parser

Errors

tokens

10

CMSC 430 Lecture 1
19

The Front End

Parser

• Recognizes context-free syntax & reports errors

• Guides context-sensitive (“semantic”) analysis (type checking)

• Builds IR for source program

Hand-coded parsers are fairly easy to build

Most books advocate using automatic parser generators

Source

code
Scanner

IR
Parser

Errors

tokens

CMSC 430 Lecture 1
20

The Front End

Context-free syntax is specified with a grammar

SheepNoise → SheepNoise baa
| baa

This grammar defines the set of noises that a sheep makes
under normal circumstances

It is written in a variant of Backus–Naur Form (BNF)

Formally, a grammar G = (S,N,T,P)
• S is the start symbol
• N is a set of non-terminal symbols
• T is a set of terminal symbols or words
• P is a set of productions or rewrite rules (P : N → N ∪T)

11

CMSC 430 Lecture 1
21

Context-free syntax can be put to better use

• This grammar defines simple expressions with addition &
subtraction over “number” and “id”

• This grammar, like many, falls in a class called “context-free
grammars”, abbreviated CFG

The Front End

1. goal → expr

2. expr → expr op term

3. | term

4. term → number

5. | id

6. op → +

7. | -

S = goal

T = { number, id, +, - }

N = { goal, expr, term, op }

P = { 1, 2, 3, 4, 5, 6, 7}

CMSC 430 Lecture 1
22

Given a CFG, we can derive sentences by repeated substitution

To recognize a valid sentence in some CFG, we reverse this
process and build up a parse

The Front End

Production Result

goal

1 expr

2 expr op term

5 expr op y

7 expr - y

2 expr op term - y

4 expr op 2 - y

6 expr + 2 - y

3 term + 2 - y

5 x + 2 - y

12

CMSC 430 Lecture 1
23

The Front End

A parse can be represented by a tree (parse tree or syntax tree)

x + 2 - y

This contains a lot of unneeded
information.

term

op termexpr

termexpr

goal

expr

op

<id,x>

<number,2>

<id,y>

+

-

1. goal → expr

2. expr → expr op term

3. | term

4. term → number

5. | id

6. op → +

7. | -

CMSC 430 Lecture 1
24

The Front End

Compilers often use an abstract syntax tree

This is much more concise

ASTs are one kind of intermediate representation (IR)

+

-

<id,x> <number,2>

<id,y>
The AST summarizes grammatical

structure, without including detail

about the derivation

13

CMSC 430 Lecture 1
25

The Back End

Responsibilities

• Translate IR into target machine code

• Choose instructions to implement each IR operation

• Decide which value to keep in registers

• Ensure conformance with system interfaces

Automation has been less successful in the back end

Errors

IR Register

Allocation

Instruction

Selection

Machine

code

Instruction

Scheduling

IR IR

CMSC 430 Lecture 1
26

The Back End

Instruction Selection
• Produce fast, compact code
• Take advantage of target features such as addressing modes
• Usually viewed as a pattern matching problem

→ ad hoc methods, pattern matching, dynamic programming

This was the problem of the future in 1978
→ Spurred by transition from PDP-11 to VAX-11
→ Orthogonality of RISC simplified this problem

Errors

IR Register

Allocation

Instruction

Selection

Machine

code

Instruction

Scheduling

IR IR

14

CMSC 430 Lecture 1
27

The Back End

Register Allocation

• Have each value in a register when it is used
• Manage a limited set of resources
• Can change instruction choices & insert LOADs & STOREs
• Optimal allocation is NP-Complete (1 or k registers)

Typically, compilers approximate solutions to NP-Complete
problems

Errors

IR Register

Allocation

Instruction

Selection

Machine

code

Instruction

Scheduling

IR IR

CMSC 430 Lecture 1
28

The Back End

Instruction Scheduling

• Avoid hardware stalls and interlocks
• Use all functional units productively
• Can increase lifetime of variables (changing the allocation)

Optimal scheduling is NP-Complete in nearly all cases

Heuristic techniques are well developed

Errors

IR Register

Allocation

Instruction

Selection

Machine

code

Instruction

Scheduling

IR IR

15

CMSC 430 Lecture 1
29

Traditional Three-pass Compiler

Code Improvement (or Optimization)

• Analyzes IR and rewrites (or transforms) IR

• Primary goal is to reduce running time of the compiled code
→ May also improve space, power consumption, …

• Must preserve “meaning” of the code
→ Measured by values of named variables

Errors

Source

Code

Middle

End

Front

End

Machine

code

Back

End

IR IR

CMSC 430 Lecture 1
30

The Optimizer (or Middle End)

Typical Transformations
• Discover & propagate some constant value
• Move a computation to a less frequently executed place
• Specialize some computation based on context
• Discover a redundant computation & remove it
• Remove useless or unreachable code
• Encode an idiom in some particularly efficient form

Errors

Opt

1

Opt

3

Opt

2

Opt

n
...IR IR IR IR IR

Modern optimizers are structured as a series of passes

16

CMSC 430 Lecture 1
31

Example

� Optimization of Subscript Expressions in Fortran

Address(A(I,J)) = address(A(0,0)) + J * (column size) + I

Does the user realize

a multiplication is

generated here?

DO I = 1, M

A(I,J) = A(I,J) + C

ENDDO

CMSC 430 Lecture 1
32

Example

� Optimization of Subscript Expressions in Fortran

Address(A(I,J)) = address(A(0,0)) + J * (column size) + I

Does the user realize

a multiplication is

generated here?

DO I = 1, M

A(I,J) = A(I,J) + C

ENDDO

compute addr(A(0,J)

DO I = 1, M

add 1 to get addr(A(I,J))

A(I,J) = A(I,J) + C

ENDDO

17

CMSC 430 Lecture 1
33

Modern Restructuring Compiler

Typical Restructuring (source-to-source) Transformations:

• Blocking for memory hierarchy and register reuse

• Vectorization

• Parallelization

• All based on dependence

• Also full and partial inlining

Errors

Source

Code
Restructurer

Front

End

Machine

code

Opt +

Back

End

HL

AST IR
HL

AST IR

Gen

CMSC 430 Lecture 1
34

Role of the Run-time System

• Memory management services

→ Allocate

� In the heap or in an activation record (stack frame)

→ Deallocate

→ Collect garbage

• Run-time type checking

• Error processing (exception handling)

• Interface to the operating system

→ Input and output

• Support of parallelism

→ Parallel thread initiation

→ Communication and synchronization

18

CMSC 430 Lecture 1
35

1980: IBM’s PL.8 Compiler

• Many passes, one front end, several back ends

• Collection of 10 or more passes
Repeat some passes and analyses

Represent complex operations at 2 levels

Below machine-level IR

Classic Compilers

Front End Middle End Back End

Dead code elimination

Global CSE

Code motion

Constant folding

Strength reduction

Value numbering

Dead store elimination

Code straightening

Trap elimination

Algebraic reassociation

*

Multi-level IR

has become

common wisdom

CMSC 430 Lecture 1
36

1986: HP’s PA-RISC Compiler

• Several front ends, an optimizer, and a back end

• Four fixed-order choices for optimization (9 passes)

• Coloring allocator, instruction scheduler, peephole optimizer

Classic Compilers

Front

End

Middle End Back End

19

CMSC 430 Lecture 1
37

2000: The SGI Pro64 Compiler (now Open64 from Intel)

Open source optimizing compiler for IA 64

• 3 front ends, 1 back end

• Five-levels of IR

• Gradual lowering of abstraction level

Classic Compilers

Fortran

C & C++

Java

Front End
Middle End

Back End

Interpro

cedural

Opts

Loop

Nest

Opts

Global

Opts

Code

Gen

CMSC 430 Lecture 1
38

2000: The SGI Pro64 Compiler (now Open64 from Intel)

Open source optimizing compiler for IA 64

• 3 front ends, 1 back end

• Five-levels of IR

• Gradual lowering of abstraction level

Classic Compilers

Fortran

C & C++

Java

Front End
Middle End

Back End

Interpro

cedural

Opts

Loop

Nest

Opts

Global

Opts

Code

Gen

Interprocedural

Classic analysis

Inlining (user & library code)

Cloning (constants & locality)

Dead function elimination
Dead variable elimination

20

CMSC 430 Lecture 1
39

2000: The SGI Pro64 Compiler (now Open64 from Intel)

Open source optimizing compiler for IA 64

• 3 front ends, 1 back end

• Five-levels of IR

• Gradual lowering of abstraction level

Classic Compilers

Fortran

C & C++

Java

Front End
Middle End

Back End

Interpro

cedural

Opts

Loop

Nest

Opts

Global

Opts

Code

Gen

Loop Nest Optimization

Dependence analysis

Parallelization

Loop transformations (fission,

fusion, interchange, peeling,

tiling, unroll & jam)
Array privitization

CMSC 430 Lecture 1
40

2000: The SGI Pro64 Compiler (now Open64 from Intel)

Open source optimizing compiler for IA 64

• 3 front ends, 1 back end

• Five-levels of IR

• Gradual lowering of abstraction level

Classic Compilers

Fortran

C & C++

Java

Front End
Middle End

Back End

Interpro

cedural

Opts

Loop

Nest

Opts

Global

Opts

Code

Gen

Global Optimization

SSA-based analysis & opt’n

Constant propagation, PRE,

OSR+LFTR, DVNT, DCE
(also used by other phases)

21

CMSC 430 Lecture 1
41

2000: The SGI Pro64 Compiler (now Open64 from Intel)

Open source optimizing compiler for IA 64

• 3 front ends, 1 back end

• Five-levels of IR

• Gradual lowering of abstraction level

Classic Compilers

Fortran

C & C++

Java

Front End
Middle End

Back End

Interpro

cedural

Opts

Loop

Nest

Opts

Global

Opts

Code

Gen

Code Generation

If conversion & predication

Code motion

Scheduling (inc. sw pipelining)

Allocation

Peephole optimization

CMSC 430 Lecture 1
42

Even a 2000 JIT fits the mold, albeit with fewer passes

• Front end tasks are handled elsewhere

• Few (if any) optimizations
Avoid expensive analysis

Emphasis on generating native code

Compilation must be profitable

Classic Compilers

Middle End Back End

bytecode
native code

Java Environment

